Learning Deep Architectures for Protein Structure Prediction

نویسنده

  • Kyungim Baek
چکیده

Protein structure prediction is an important and fundamental problem for which machine learning techniques have been widely used in bioinformatics and computational biology. Recently, deep learning has emerged as a new active area of research in machine learning, showing great success in diverse areas of signal and information processing studies. In this article, we provide a brief review on recent development and application of deep learning methods for protein structure prediction. The objective of this review is to motivate and facilitate deep learning studies for addressing problems in bioinformatics and computational biology where interesting avenues of research can emerge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction

Residue-residue contact prediction is a fundamental problem in protein structure prediction. Hower, despite considerable research efforts, contact prediction methods are still largely unreliable. Here we introduce a novel deep machine-learning architecture which consists of a multidimensional stack of learning modules. For contact prediction, the idea is implemented as a three-dimensional stack...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Protein Secondary Structure Prediction Using Deep Multi-scale Convolutional Neural Networks and Next-Step Conditioning

Recently developed deep learning techniques have significantly improved the accuracy of various speech and image recognition systems. In this paper we adapt some of these techniques for protein secondary structure prediction. We first train a series of deep neural networks to predict eight-class secondary structure labels given a protein’s amino acid sequence information and find that using rec...

متن کامل

DeepDTA: Deep Drug-Target Binding Affinity Prediction

The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a continuum of binding strength values, also called...

متن کامل

Deep architectures for protein contact map prediction

MOTIVATION Residue-residue contact prediction is important for protein structure prediction and other applications. However, the accuracy of current contact predictors often barely exceeds 20% on long-range contacts, falling short of the level required for ab initio structure prediction. RESULTS Here, we develop a novel machine learning approach for contact map prediction using three steps of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015